
RTBH (University of California Computing
Services Conference 2016)
Forest Monsen, Senior Information Security Analyst, University of
California, Santa Cruz

What it is
Why you should do it
Our story
How ours works, at a high level
More detail
Benefits we’ve seen
What you’ll actually need, to implement the solution

1) What it is
a) RTBH stands for “remotely triggered black hole” routing or filtering.

2) Why you should do it
a) Reduce pointless noise in your environment, logs, and tools, from 24/7

script kiddies and brute forcers.
b) Discourage easy reconnaissance. Recon is the first step in the kill chain.

The earlier you stop an attacker, the better.
c) Spend your time and attention wisely. You should spend your attention

on attacks that matter. By making it slightly harder, you’re dealing with a
slightly different class of attacker.

3) Our story
a) When we started, attackers and scanners had unfettered access. Aside

from some pockets of our address space that had been firewalled.
b) So folks from anywhere in the world could scan every system on our

campus, search for juicy vulnerabilities at their leisure, and exploit them.
c) We did have netflow data, so we could see occasional blips in border

traffic. Then we installed Bro and started to look more deeply. At that
point we still were just watching the scans and brute force attacks stream
on by.

d) We think of scanning as someone going around and rattling every single
door and window in a neighborhood, to see which are loose. Someone
could very well stop at a scan, and not go any further than that. But when
attacking, a scan of some sort is usually the first step.

e) We also saw a lot of brute force attempts. Online brute force attacks
involve iterating through passwords or usernames, making many, many
attempts to get in, in any hole you can find.

f) We decided we needed some kind of a bouncer, to stop malicious folks.

4) How ours works, at a high level
a) Bro at the border watches traffic and characterizes it. Our SIEM retrieves

logs and netflow, and looks for bad behavior there.
b) Block requests are sent from Bro and the SIEM to a queue (persistent

storage, fronted by Django and its REST framework).
c) Blocking agents periodically check in with the queue, implement blocks

as requested, and update the queue with what they’ve done.

5) More detail
a) Blocks by default expire in one hour. The goal is to interrupt the least

skilled attackers, and make ourselves a less desirable target. We want to
be dealing with folks who are more skilled.

b) Blocks are auto-scaled; if you come back repeatedly, you are blocked for
more time.

c) A modular architecture: additional sources can request blocks; additional
block implementers can be added. Currently two block requestors, and
one implementer.

d) Django offers an admin interface out-of-the-box. The BHR site code allows
for manual management of blocks through a simple Web interface.

e) The implementer is written in Python. Checks in with the Django queue.
Implements blocks by talking to Quagga. Quagga advertises BGP routes to
the borders. The border routers are configured to talk to Quagga as an
iBGP peer.

f) On the border routers, the next hop for individual IPs is set to an IP
address that dumps what it receives into the Null0 interface. See the Cisco
whitepaper.

6) Benefits we’ve seen
a) We blocked, on average, 26k unique IP addresses per day, now down to

14k.
b) Over 5M total blocks after 7 months.
c) After correlating with public and private lists of “known bad” malicious

addresses, we saw a 94% reduction in alerts regarding communications
with these known bad malicious IPs.

d) So we did get a “bouncer.” S/he works 24/7.

7) What you’ll actually need, to implement the solution
a) Someone who understands BGP
b) Someone who can script against a REST API, understands how to install

things like Django and can write some Python
c) Border routers configured for BGP
d) The Cisco whitepaper
e) Bro and its BHR integration
f) Quagga
g) NCSA’s BHR site code
h) NCSA’s BHR client code

http://www.cisco.com/c/dam/en_us/about/security/intelligence/blackhole.pdf
http://www.cisco.com/c/dam/en_us/about/security/intelligence/blackhole.pdf
http://www.cisco.com/c/dam/en_us/about/security/intelligence/blackhole.pdf
https://github.com/ncsa/bhr-bro
http://www.nongnu.org/quagga/
https://github.com/ncsa/bhr-site
https://github.com/ncsa/bhr-client

